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Preferred pattern of convection in a porous layer 
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The problem of finite-amplitude thermal convection in a porous layer between two 
horizontal walls with different mean temperatures is considered when spatially non- 
uniform temperature with amplitude L* is prescribed a t  the lower wall. The 
nonlinear problem of three-dimensional convection for values of the Rayleigh 
number close to the classical critical value is solved by using a perturbation 
technique. Two cases are considered: the wavelength 7:) of the nth mode of the 
modulation is equal to or not equal to the critical wavelength yc for the onset of 
classical convection. The preferred mode of convection is determined by a stability 
analysis in which arbitrary infinitesimal disturbances are superimposed on the 
steady solutions. The most surprising results for the case y r )  = yc for all n are that 
regular or non-regular solutions in the form of multi-modal pattern convection can 
become preferred in some range of L", provided the wave vectors of such pattern are 
contained in the set of wave vectors representing the spatially non-uniform boundary 
temperature. There can be critical value(s) L,* of L* below which the preferred flow 
pattern is different from the one for L* > L,*. The most surprising result for the case 
7:) + y, and 7:) = for all n is that some three-dimensional solution in the form 
of multi-modal convection can be preferred, even if the boundary modulation is one- 
dimensional, provided that the wavelength of the modulation is not too small. Here 
y(b)  is a constant independent of n. 

1. Introduction 
The classical problem of thermal convection in a horizontal and symmetric porous 

layer with prescribed temperatures a t  the boundaries has been the subject of 
investigation by many authors in the past. The linear stability for the onset of 
convective flow was first investigated theoretically by Lapwood (1948). Notable 
subsequent nonlinear investigations of the problem were due to Palm, Weber & 
Kvernvold (1972), Straus (1974) and Jospeh (1976). These and other investigations 
of this so-called perfect problem established, in particular, the following results. The 
linear problem is self-adjoint. The conduction state is unique for Rayleigh number R 
below R, = 4xz. Here R = PgkATdp,c/(vh),  where /3 is the coefficient of thermal 
expansion, g is the acceleration due to gravity, k is the Darcy permeability 
coefficient, AT is the temperature difference across the layer, d is the depth, of the 
layer, po is the reference fluid density, c is the specific heat at  constant pressure, h is 
the thermal conductivity of the porous medium (fluid-solid mixture), v is the 
kinematic viscosity and R, is the critical value of R below which there is no motion. 
The first bifurcation, which takes place at R = R,, is thus supercritical, and the two- 
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dimensional rolls with the critical wavenumber a, = n: = 2n/y,  are the preferred 
mode of convection. 

As was pointed out in Riahi (1983) and confirmed in Riahi (1985), the problem of 
thermal convection in a porous medium is simpler than the corresponding one in an 
ordinary medium, but the main qualitative features of thermal convection in these 
two systems are the same at  least for the critical regime where R M R, and for large- 
Prandtl-number fluid. Hence the problem of thermal convection in a porous medium 
can conveniently be used to study nonlinear efTects such as the preferred flow 
pattern. 

This paper studies the problem of the preferred pattern of convection at small 
amplitude in a horizontal porous layer with a spatially non-uniform temperature 
prescribed at  the lower boundary. 

This problem is an example of an imperfect bifurcation driven by imperfect 
heating and/or cooling, and there are a number of relevant studies in the literature. 
Keller (1966) studied differential heating effects in a model of thermal convection. 
Reiss (1976) applied the method of matched asymptotic expansions to a number of 
imperfect bifurcation problems. Matkowski & Reiss (1977) presented an asymptotic 
theory to analyse perturbations of bifurcations of the solutions of nonlinear 
problems. Kelly & Pal (1978) and Pal & Kelly (1978) investigated two-dimensional 
thermal convection with one-dimensional spatially periodic boundary conditions. 
Tavantzis, Reiss & Matkowsky (1978) applied their theory of singular perturbations 
in a mathematical and systematic manner to the case of a bounded layer with a 
rather arbitrary one-dimensional variable temperature imposed on one boundary. 
Hall & Walton (1978) considered the case of a bounded fluid layer with constant 
temperature on the horizontal boundaries but with non-adiabatic endwalls. Erneux 
& Cohen (1983) examined imperfect bifurcation near a double eigenvalue. Walton 
(1982, 1983) investigated the onset of thermal convection in a fluid layer of either 
slowly increasing depth or when the temperature difference between the horizontal 
boundaries is a monotonic function of a single horizontal variable. More recently, 
Krettenauer & Schumann (1989, 1992) carried out direct numerical simulation of 
Rayleigh-BBnard convection for the case where the lower surface height varied 
sinusoidally in one direction and for both laminar and turbulent flow regimes. Some 
discussion of their results will be given in $5. 

The present investigation is aimed at examining the effects of a spatially non- 
uniform boundary condition upon the pattern of convection. It turns out that the 
following two general types of variation in the boundary condition lead to the same 
qualitative results for the present case where the convective flow is considered in a 
range close to the onset of convection based on classical theory (Lapwood 1948) : (i) 
a bounding surface which is plane but its temperature varies with respect to the 
horizontal variables x and y along the surface; (ii) a surface which has constant 
temperature but is corrugated, so that the gap size between the two walls varies with 
respect to  x and y. 

The general problem under consideration can have practical values in that one 
might want to roughen a boundary to enhance the transport process or to control the 
flow structure. This later practical aspect of the problem is the main motivation for 
the present study which is concerned with the preferred convection pattern(s). 

Kelly & Pal (1978) investigated the problem of two-dimensional convection with 
one-dimensional spatially periodic boundary conditions. They assumed that the 
amplitude of the spatial non-uniformities is small, and they set the wavelength equal 
to the critical wavelength for the onset of Rayleigh-BBnard convection. They 
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determined the Nusselt number as a function of Rayleigh number R,  Prandtl 
number, and modulation amplitude. Their assumption of two-dimensionality of the 
problem, however, posed a severe restriction on the analysis, and, in particular, 
pattern selection mechanisms could not be studied. Pal & Kelly (1978) considered the 
onset of two-dimensional thermal convection when the one-dimensional variations of 
the temperatures of the walls are in the special form of a sine wave. Here the 
wavelength of the modulation is assumed to be different from the critical wavelength. 
They found that the modulation can be stabilizing. The present investigation 
extends the work of both Kelly & Pal (1978) and Pal & Kelly (1978) to  arbitrary 
three-dimensional flows and an arbitrary one- or two-dimensional non-uniform 
temperature boundary condition a t  the lower wall. We have found a number of 
interesting results. In particular, we found for the first time that a non-regular flow 
pattern can be preferred in some range of modulation amplitude even if the spatially 
non-uniform boundary temperature represents a regular pattern. Here by a 'regular 
flow pattern' we mean a pattern of the horizontal structure of the flow solution 
whose wave vectors k,(n = -N,  . . ., - 1 , 1 , .  . ., N ;  N is a positive integer) all have the 
same magnitude and where the angles w between the two consecutive wave vectors 
all have the same value (Busse 1967). Examples of regular patterns are those due to 
two-dimensional rolls (N = 1, w = 180"), square cells (N = 2, w = 90") and hexagonal 
cells (N = 3, w = 60"). A solution other than a regular one is called a non-regular 
solution. Examples of non-regular patterns are those due to rectangular cells (N = 2, 
w = wy and 180"-w;, where 0 < wy < 180" and wy =+ 90") and six-sided polygonal 
cells (N = 3, w = wi, w! and 180' - wz - wi, where 0 < wi -I- w; < 180" with 
wi = wi = 60" discarded). The non-regular solutions include the so-called semi- 
regular solutions where each wave vector encloses the angle 2n/N with each of its 
second nearest neighbours on either side. An example of a semi-regular pattern is the 
rectangular pattern defined above. 

Let us now designate the amplitudes of convection and the non-uniform boundary 
temperature by E and L* = SL, respectively, where it is assumed that 6 < 1,s < 1 and 
L is an order-one quantity. Kelly & Pal (1978) investigated the two-dimensional non- 
trivial resonant wavelength excitation case where L* = O(e3) .  They demonstrated 
(Kelly &, Pal 1976, 1978) that  this case corresponds to the range 
R M R, (R-R, = O ( 2 ) ) .  This result can be derived from their modal equation of the 
form 

€3 = ~ ( ~ - R , ) / R , c , ~ + s c , ,  (1.1) 

where c ,  and c2 are real constants. See Kelly & Pal (1976, 1978) for further details. 
The modal equation (1 .1)  represents the scalings for a steady-state Landau-type 
equation which includes the effect of the boundary modulation. The same relation 
between 6 and E was obtained by Tavantzis et al. (1978). For non-resonant 
wavelength excitation, Pal & Kelly (1978) applied a double series expansion in 
powers of 6 and E for each of the dependent variables and for R.  In  the present three- 
dimensional problem, we use the same procedures as Kelly & Pal (1978) and Pal & 
Kelly (1978). 

2. Mathematical formulation 
We consider an infinite horizontal porous layer of average depth d filled with fluid 

and heated from below. The layer is bounded above and below by two plane surfaces 
whose mean temperatures are T,  and q, respectively. We choose to scale the 
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temperature T* on the basis of AT = - Tu. It is convenient to introduce a Cartesian 
system of coordinates, with the origin on the centreplane of the layer and with the 
z-coordinate in the vertical direction (opposite to the direction of the gravity force). 
We shall examine the effects of lower boundary modulations at a fixed value of AT 
and represent the magnitude of such variation relative to AT by 6. We define a 
temperature relative to the conduction state by 

AT 
d 

T*(x,  y, X ,  t )  = ( id  -2) - + T(x, y, Z ,  t ) .  

It is convenient to  use non-dimensional variables in which lengths, velocities, time 
and temperature T are scaled respectively by d ,  h/dp,c,  d2p,c/h and ATIR. Here h is 
the thermal conductivity of the porous medium (fluid-solid mixture), po is the 
reference density of the fluid, c is the specific heat a t  constant pressure and R is the 
Rayleigh number (defined in 6 1 ) .  Then, with the usual Boussinesq approximation 
that density variations are taken into account only in the buoyancy term, the 
Darcy-Boussinesq-Oberbeck equations in the limit of infinite Prandtl-Darcy 
number (Joseph 1976) are 

o = -vp+ez-u, ( 2 . 2 ~ )  

v-u = 0, (2 .2b )  

(2 .2c )  
a8 
--+u*V6' = Ru*z+V28.  
at 

Here 0 is the dimensionless T, u is the velocity vector, P is the modified deviation of 
pressure from its static value and z is a unit vector in the vertical direction. 

The velocity vector u in ( 2 . 2 )  is defined according to Darcy's law as an average over 
the microscale of the porous medium. We shall assume that the microscale is small 
enough compared with any scale size of the flow for u to remain a well-defined 
quantity. 

The physically appropriate infinite value of the Prandtl-Darcy number follows 
from the extraordinarily small values of the permeability coefficient in most porous 
materials. 

The boundary conditions for u and 8 are 

u . z = O  a t  z = + + ,  

6' = 6Rh(x,y) at x = -1 2, 

6'=0 a t  z = ; ,  

( 2 . 3 ~ )  

(2 .36)  

( 2 . 3 ~ )  

where h(x, y) is a given spatially non-uniform function of x and y. Since we have used 
the Darcy assumption in order to replace V2u with -u  in ( 2 . 2 ) ,  we cannot impose 
boundary conditions on the tangential components of u. 

The governing equations (2.2) can be simplified by using the representation 

u = O $ ,  5 2 ~ v v v x z  (2.4) 

for the divergence-free velocity vector field u (Riahi 1983). Taking the vertical 
component of the curl of the curl of ( 2 . 2 ~ ~ )  and using (2.4) in ( 2 . 2 ~ )  yields 

A2(VZ# + 6') = 0,  ( 2 . 5 a )  

(2.5b) 
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where 

Equations (2.5) must then be solved subject to the boundary conditions (2.36), ( 2 . 3 ~ )  
and 

q5=0 a t  x = & - t .  (2.6) 

An alternative lower boundary condition is that of a constant-temperature 
corrugated rigid boundary, where the conditions a t  the lower boundary for both q5 
and 0 are prescribed at  x = -;+ah. It turns out that the qualitative results of the 
present formulation based on such lower boundary conditions do not differ from the 
corresponding results based on the lower boundary conditions given by (2.36) and 
(2.6). (See Appendix A). 

3. The case of resonant wavelength excitation ( y r )  = yc)  

Pal 1978). We consider the following expansions for q5, 0 and R in powers of e :  
This case corresponds to the critical regime where R % R ,  and L* = 0(e3 )  (Kelly & 

and set S = e3. Upon inserting (3.1) into (2.36), (2.3c), and (2.5)-(2.6) and disregarding 
the quadratic terms, we find the linear problem 

( 3 . 2 ~ )  

(3.2b) 

( 3 . 2 ~ )  

This system is the classical linear system (Riahi 1983). The general solution of (3.2) 
can be written as 

where the function W has the representation 

N N 

W(x,y) = CnWn= C C,exp(ik,.r), (3.4) 
n=-N n--N 

and satisfies the relation 
A, W = -aZW, ( W W )  = 1. (3.5) 

Here the angle brackets indicate an average over the fluid layer, r is the horizontal 
position vector, i = 1/( - l ) ,  a is the horizontal wavenumber of the flow structure, N 
is a positive integer, and the horizontal wavenumber vectors k ,  of the flow structure 
satisfy the properties 

The coefficients C, satisfy the conditions 

k,.z = 0, lk,l = 01, k-, = -kn.  (3.8) 
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where the asterisk indicates the complex conjugate. 
Following Riahi (1983), we have the following results : 

f(z) = 1 / 2  cos xz, g(z) = (x2+ 2)  2/2 cos m,'l 
(3.8) R, = K ~ ( K ~ + C C ~ ) ~ ,  R, = 4r2, a, = K. 

At the order c2, (2.3b), ( 2 . 3 ~ )  and (2.5)-(2.6) become 

4 7 " 2  + 8,) = 0, 

V2O2- R,  A, $2-R1 A2 #, = a#,* DO,, 

(3.9a) 

(3.96) 

$2 = 8, = 0 at  z = &+. (3.9c) 

The system (3.9) is of the classical type (Riahi 1983). 

equations of higher order in E require us to define the following special solutions 
and B,, of the linear system of equations (3.2) : 

Since the classical problem is self-adjoint, the solvability conditions for the 

(3.10) 

Multiplying ( 3 . 9 ~ )  by $f,, (3.9b) by -R;' O f n ,  adding and averaging over the whole 
layer and using ( 3 . 9 ~ )  yields R ,  = 0 (Riahi 1983). Equations (3.9) then yield 

(3.11 c) 

I ,  p = - N ,  1 + - p  

where 
d,, = a-2(kl*kp), 

and D = d/dz. The expressions for the functions E' and G are given by (Riahi 1983) 

(3.12a) 

G(z)  = ix sin 2xz. (3.12 b) 

At the order e3,  (2.3b), ( 2 . 3 ~ )  and (2.5)-(2.6) become 

A2(v2$3 + e3)  = O ,  (3.13a) 

V283-R,A,$3-R2A2$1 = f2$,*U8,+f2$,.UOl, (3.13b) 

q53 = 8,-R,h = 0 at z = -;, (3.13 c) 

$3 = 8, = 0 at z = ;. (3.13d) 

The function h given in ( 3 . 1 3 ~ )  is assumed to have the following arbitrary 
representation : 

N(b)  N(b)  

h(x, y) = R;l LCf)  W r )  = R;l LCr'exp (ikg)-r), (3.14) 

where L is a constant, N b )  is a positive integer which may tend to infinity and the 
horizontal wavenumber vectors kkb) satisfy the properties 

kg) .z  = 0, lk?)l = ai*) 2 ~ / y $ ) ,  kFi = -k(*) n .  (3.15) 

,=-N(b) h=-N(b)  
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The coefficients C:) satisfy the condition 

(3.16) 

We shall assume that akb) = ac = K (Riahi 1983). In general, a:) are not all the 
same as a, for different n. Most of these latter cases will be considered in $4> while the 
rest, mentioned in 95 will be discussed in detail in a future contribution. 

Multiplying ( 3 . 1 3 ~ )  by q5Tn, ( 3 . 1 3 ~ )  by -R;l OT,, adding and averaging over the 
whole layer and using ( 3 . 1 3 ~ )  yields 

N ( b )  

R,  F~ cn = - 2 ( 4 2 )  X ~ L  2 cgyw; wg) 
r n = p ~ ( b )  

+ c [ - ( ~ f i l l + ~ r n p ) ~ ~ + ~ z l ~ r n ~ 1 ~ p ( ~ ~ w r n  W, wp>+G,Cn 
l*-p  

( n = - N  ,..., - l , l , . . . ,  N), (3.17) 

where Fl and Ji are functions of p,, and are given by 

= -c2(<sDf[D2-~~]P), (3 .184  

Fz = -az( fg[D2 -a,"] DF) (3.18 b )  

G, = --a2(fgD3G), Po = a 2 ( f g ) ,  ( 3 . 1 8 ~ )  

For L = 0, the expression for R, given by (3.17) is the same as the corresponding one 
for the classical problem (Riahi 1983). Hence, (3.17) can be written in the following 
form : 

a, = a[2(1 +&J]k. 

N ( b )  

( ~ , - - ~ , , ) ~ ~ ~ , = - 2 ( 1 / 2 j ~ 3 ~  cgyw;wg)) ( n = - ~  ,..., - i , i  ,..., N ) ,  
m = - ~ ( b )  

(3.19) 
where R,, denotes the classical expression for R,  (Riahi 1983). 

To distinguish the physically realizable solution( s) among all possible steady 
solutions, the stability of $ , 8  with respect to arbitrary three-dimensional 
disturbances Jl s" is investigated. The equations and the boundary conditions for the 
time-dependent disturbances with addition of a time dependence of the form exp (g t )  
are given by 

A2(V2J+s") = 0, (3.20a) 

(3 .20b)  

$ = S = O  at z = + t .  (3.20 c) 

When (3.1) is used in (3.20) it becomes evident that the system (3.20) can be solved 
by an expansion of the form 

- d+ VG-RA~ 6 = a$. v8 + a$.ve, - -  

(3.21) 

The solutions to the stability problem can be obtained in direct analogy to that 
discussed by Riahi (1983) for the classical problem (6 = 0 case). The solvability 



536 D.  N .  Riahi 

conditions in the orders en (n  = 0,1,2) lead to 
critical disturbances 

fTo = fTl = 0, 

(g2-fT.2c)<q2)Cn = -2 (d2)z3L 

the following results for the most 

where cr2, denotes the classical expression for (r, given by Riahi (1983). 
Using (3.19), (3.22) and the results given by Riahi (1983) for R,, and v2,, we obtain 

the following non-trivial results. For sufficiently large L, R, < 0, and thus the 
corresponding solution is subcritical ( R  < R,). For sufficiently large L, there may be 
more than one stable solution. However, the preferred solution corresponds to the 
one for which R is a minimum. 

Let us now consider the following few specific examples in order to  illustrate the 
non-trivial and often surprising inter-relations between the boundary modulation 
pattern and the subsequence preferred flow pattern : 

= a, for all m. The terms on the right- 
hand sides of (3.19) and (3.22) are non-zero only if a t  least one of the wave vectors 
k, is in the direction of kg).  If none of the wave vectors k ,  are along kg) for all m, 
then the right-hand-side terms in (3.19) and (3.22) are zero, R, = R,,, g2 = g,, and the 
preferred flow pattern is in the form of two-dimensional rolls (Riahi 1983) with 
R, = n4. Orientational degeneracy of the solutions, however, is not removed by the 
boundary modulation effect. If one of the wave vectors k ,  is along, say, kib) then we 
find from Riahi (1983), (3.19) and (3.22) that two-dimensional rolls are preferred and 
that 

R, = n4-22(42)n3~, (3.23 a) 

g 2  < (72,. (3.236) 

The expression for crZc is negative only for two-dimensional roll convection. Any 
other solutions (three-dimensional solutions) are not allowed by the nonlinear 
system, unless L = 0. We find from ( 3 . 2 3 ~ )  that subcritical instability occurs for 
L > n / 2 ( 4 2 ) .  The results discussed above indicate that all the two-dimensional roll 
solutions parallel to any direction are stable. However, rolls parallel to kib) have 
smaller R, as evidenced from (3.23), and are, therefore, preferred. 

Example 2. iVb) = 2, Cg) = 2 and a$) = a, for all m. The terms on the right-hand 
sides of (3.19) and (3.22b) are non-zero only if at least one k,  is along kg) .  If no k ,  
are along kg) ,  then the right-hand sides of (3.19) and (3.22b) are zero, R2 = Rzc = n4, 
cr, = cr,, and the two-dimensional rolls with oriental degeneracy are stable. If one 
of k ,  is along kg) ,  then we find from Riahi (1983), (3.19) and (3.22) that two- 
dimensional roll solutions are stable, satisfying (3.23 b)  and 

Example 1 .  iVb) = 1 ,  Cg) = I / d 2  and 

R, = 7 ~ 4  - 2 7 ~ 3 ~ .  (3.24) 

The expression for uzc is negative only for two-dimensional roll convection. These 
stable rolls can be either along kib) (or k?;) or along kib) (or k?;), and they satisfy 
(3.24). For three-dimensional convection in the form of square cells whose wave 
vectors coincide with those of the modulational boundary pattern, we find (3.23 b)  
and the following expression for R, : 

(22 /2 )n3~ .  
1 7n4 

R,=14- (3.25) 

No other solutions are possible, unless L = 0. The expression for R, given by (3.24) 
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is less than (greater than) the expression for R, given by (3.25) ifL is less than (greater 
than 1, = 0.259. Hence the preferred flow pattern is that due to two-dimensional rolls 
along kib) or kib) for L < I,, while the square pattern convection is preferred for L > I,. 
The wave vectors for these square cells coincide with those due to boundary 
modulation. 

Example 3. @ b )  = 3, 17%) = (6)-; and a$) = a, for all m. Following the procedure 
discussed in the above two examples, we find the following results. For L = 0 or for 
the case where no k, are along any k$), then orientationally degenerate two- 
dimensional rolls are stable. For the case where the wave vectors of the flow pattern 
coincide with a subset of the wave vectors due to the boundary modulation, we find 
that for L in the ranges 0 < L < I , ,  1, < L < 1, and 1, < L,  two-dimensional rolls, a 
rectangular pattern and a hexagonal pattern are preferred, respectively. Here 
1, = 0 . 4 3 2 ~  and I, = 3 . 0 6 ~ .  

Example 4.  N@) = 4, C:) = 1/(242)  and a$) = a, for all m. Following the procedure 
discussed in the first two examples, we find the following results for the case where 
the wave vectors of the flow pattern coincide with a subset of the wave vectors of 
the boundary modulation. For L < 1,, two-dimensional rolls are preferred. For 
1, < L < I,,, squares are preferred, For I,, < L < Z,, rectangular (non-square) 
patterns are preferred. For I, < L < I,, six-sided polygonal patterns are preferred. 
For 1, < L,  a multi-modal (N = 4) pattern is preferred. Here Z,(i = 1,2r, 2,3)  are 
constants which can be determined by the procedure similar to that outlined in 
example 2 for the determination of I , .  

The four examples presented above indicate a general theory for arbitrary N(b) and 
for the case where the wave vectors of the flow pattern coincide with a subset of the 
wave vectors of the boundary modulation. Such a theory, to be discussed below, 
is consistent with the results for Nb)  = I ,  2 ,3 ,4 .  However, we have not been 
able to find a rigorous proof for arbitrary N b ) .  There exist positive constants 
Z,(i = 1,2,2r, ..., m ; m  =N*)--l) such that Zip1 < I,, < I ,  < Zi+l for all i. Here a 
subscript r denotes It associated with a particular regular solution. For L < I,, two- 
dimensional roll convection (N = 1) is preferred. For 1, < L < I,,, square pattern 
convection (N = 2) is preferred only if the wave vectors of such regular pattern are 
included in the expression (3.14) for h ( x , y ) .  Otherwise, I,, = I,. For I,, < L < I,, 
rectangular pattern convection (N = 2) is preferred only if the wave vectors of such 
a non-regular pattern are included in the expression for h. Otherwise, I,, = E , ,  For 
ZjWl < L < EJ2 < j < m), regular multi-modal (N = J )  pattern convection is preferred 
only if the wave vectors of such a regular pattern are included in the expression for 
h. Otherwise, ljr = Z+,. For Zjr < L < l j ,  non-regular multi-modal (N = J )  pattern 
convection is preferred only if the wave vectors of such a non-regular pattern are 
included in the expression for h. Otherwise, ljr = l j .  For L > I,, multi-modal 
(N = m + 1 )  pattern convection is preferred. 

4. The case of non-resonant wavelength excitation ($) = y(*) =l= yc) 
This case corresponds to the critical regime where R a! R, and we shall show that 

O ( 2 )  d 6 < O(s) .  Following Pal & Kelly (1978), we consider the following expressions 
for 6, 6 and R in powers of E and 6: 
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It can be seen from (4.1) that the terms with m = 0 represent the convection induced 
by the boundary non-uniformity, while the terms with n = 0 represent three- 
dimensional convection which can exist for a symmetric layer when R > Rc and 
6 = 0. Upon inserting (4.1) into (2 .3b) ,  (2 .3c) ,  (2.5)-(2.6) and disregarding the 
quadratic terms, we find the linear problem whose order-elSO system is given by a 
system of the form (3.2), provided that +,, 8, and R, are replaced, respectively, by 
$lo, and Roo. This system has a solution of the form (3.3)-(3.8). The order-eOcY1 
system of the linear problem is of the form 

AZ(V2$,1 + 801) = 0, 

V2~0, - Rc A2 $01 = 0, 
$,, = 8,,-R,h = 0 a t  z = -1 2 ,  

q501 = Ool = 0 a t  z =+. 
The general solution of (4.2) can be written as 

( 4 . 2 ~ )  

(4.2b) 

( 4 . 2 ~ )  

(4.2d) 

where f, and g ,  are the solutions of the following system of equations: 

(4-4) I [D2- (ccP’)’]~, + g, = 0, 

[D2- (akb’)2] g, + R , , ( C C ~ ~ ’ ) ~ ~ ,  = 0, 

f, = gn-Rc = 0 a t  z = - t ,  
fn = g, = 0 at x = $, 

where D = d/dx. The solution to the system (4.4) is given in Appendix B. It is of 
interest to note that these results, (B 1)-(B 3), indicate that the double series 
expansion procedure of this section breaks down for a:) = a, since g, and f, become 
unbounded. Hence, our method of solution here is strictly valid for yz)  + yc. 

Some preliminary investigations indicated that the trivial result that the boundary 
modulation controls the flow patterns will be obtained if 6 2- O ( E ) .  Hence non-trivial 
results are due to cases where 6 < O ( E ) .  However, consideration of the series 
expansion for R given in (4.1) indicates that the present weak imperfection case can 
lead to non-trivial results only if R,,6 % R,,E~, where R,, = R,, is the classical 
expression for R, introduced in (3.19). Hence 

O ( 2 )  < s < O ( € ) .  (4.5) 
This result implies the need for the expression for R,, which is found by applying the 
solvability condition for the order-€& system of the nonlinear problem. It is 

where O,,, has the same expression as 8,, introduced in (3.10). Using (3.3) and (4.3), 
(4.6) can be simplified to the following form: 

(4.7) 

where the expression for the coefficient S,,, which is a function of ag) and ~lz, is 
given in the Appendix B and 

+g = (k,.k$+)/(na$)). 
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It can be seen from (4.7) that R,, can be non-zero only if 

k,+k,+k$” = 0 (4.8) 

for a t  least some 1 and p .  However, for ag) = Zn, R,, is zero if (4.8) is satisfied since 
S,, given by (B 4) vanishes. Using (3.6)) (3.8) and (3.15), we find that the condition 
(4.8) cannot be satisfied if 

If the condition (4.9) is satisfied for all p ( p  = -iVb), ... - 1 ,  1,  ..., Nb) ) ,  then R,, = 0 
and the dominant effects can be isolated by considering the terms 

R,, cY2 + R,, scY+ R,, e2 

in the series expansion (4.1) for R.  It is seen from the above expression that if 
O(e2) d cY2 4 0(1), then O(s) d 6 4 1 and the trivial result that the boundary 
modulation removes the pattern degeneracy at the linear level follows. On the other 
hand, if 6’ 4 0 ( e 2 ) ,  the R,, term dominates the other terms in the above expression, 
implying negligible imperfection effect. Hence, non-trivial results due to significant 
boundary modulations exist only if 

for at  least some p .  
We shall assume that the condition (4.10) is valid. It is of interest to note that the 

expression for R,, given by (4.7) can always be negative for the boundary 
modulations represented either by the function h, given by (3.14), or by the function 
( -h). For af) < 2n, we evaluated the expression (4.7) for R,, using the results given 
in Appendix B and found that R,, < 0 for Lcf )  > 0, while R,, > 0 for Leg) c 0. Hence 
subcritical instability is possible. 

Let us now consider the following specific examples in order to illustrate the non- 
trivial and often surprising inter-relations between the boundary modulation pattern 
and the subsequent preferred flow pattern. 

Example I ,  iVb) = 1 ,cg) = 1/2/2, a$) < 2n and all the ag) have the same value. The 
expression on the right-hand side of (4.7) can be non-zero only if 

#g = #g = oI3(2n).  (4.11) 

This result implies that the preferred solution corresponds to rectangular pattern 
convection where the angle w between two adjacent wave vectors is either 

w = 2 c0s-l [ag)/(2n)] or 18Oo--w. (4.12) 

For ag) = 1/27c, square pattern connection is preferred. Since a:) 9 0, two- 
dimensional roll convection is not possible. 

Example 2. iVb) = 2 (regular modulation pattern), c g )  = i, af) < 27c and all the ag) 
have the same value. The expression on the right-hand side of (4.7) can be non-zero 
only if (4.11) holds for either p = 1 or p = 2. This result, together with (4.7)) implies 
that square pattern convection is preferred for af) = 4 2 7 ~ .  For other values of ag), 
both rectangular and multi-modal (N = 4) patterns correspond to  the same critical 
R,,, and thus the preferred pattern is the one due to  the initial condition. 

The two examples presented above can be extended to arbitrary Nb’ and for the 
case where the boundary pattern is regular. For the case where kz’. k$‘) = OM times 
and for R,, < 0 multi-modal convection patterns (N = 2, ..., 2M) are the preferred 
patterns for af) = 2/27c. For R,, > 0 multi-modal (N = 2, . . . , 2(iVb) -M) )  patterns are 
all possible. For other cases, multi-modal (2 < N < %Pb’) patterns all correspond t o  

u p  > 2n. (4.9) 

a$‘) < 2~ (4.10) 

$8 FLM 246 
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the same critical R,,, and thus the preferred pattern is one of these due to the initial 
condition. 

5. Discussion 
In formulating the present problem we have considered a horizontal layer bounded 

above and below by two flat plates whose mean temperatures are maintained at 
constant values Tu and z, respectively. The lower plate is then given an additional 
spatially modulated temperature represented by the function Sh(x, y) given by (3.14). 
As we have shown in Appendix A, this problem is not expected to lead to different 
qualitative results from those for the problem where the lower boundary’s location 
is at z = -i+Sh(x,y). Walton (1982) has shown similar results for the case of a 
horizontal fluid layer with slowly increasing depth. The corrugated boundary 
problem can incorporate the effects of roughness elements of arbitrary shape h, say 
on the lower boundary, and the expression (3.14) for h is still valid, provided that N(b’ 
may tend t o  infinity and that a:) may not all have the same value. This extension 
of the problem can be analysed easily by dividing the boundary modulation modes 
into two groups of the two different types considered in $0 3 and 4. Hence, the results 
presented in these two sections are applicable for each of these two groups of modes. 
Since the preferred flow pattern corresponds to the smallest value of R and (4.5) holds 
for the results presented in $ 4  then the preferred flow pattern is due to the results 
presented in $4 for R,, < 0, while the preferred flow pattern is due to the results 
presented in $ 3  for R,, > 0. 

An interesting extension of the present problem, to be described in a future 
contribution, is to include the spatially modulated temperature on both the upper 
and lower boundaries. This problem was considered by Kelly & Pal (1978) for the 
two-dimensional case. Such an extension can generate a mean flow when a difference 
in phase is allowed between the variations occurring at the upper and lower 
boundaries (Busse 1972) and is of interest in studies of how moving thermal waves 
in an otherwise homogeneous fluid induce mean flows (Busse 1972; Young, Schubert 
& Torrance 1972). 

Pal & Kelly (1978) investigated the problem of the onset of two-dimensional 
Rayleigh-BBnard convection with a particular one-dimensional boundary modu- 
lation in the form of a sine wave. They found that R,, = 0 and R,, > 0 for the case 
where a‘,“) + 2ac, while R,,, < 0 for ahb) = 2a,. Their case corresponds t o  two- 
dimensional flow with the one-dimensional boundary modulation version of the 
present study with Lckb) > 0. As we discussed in $4, we found that R,, =I= 0 for 
ag) + 2ac only for three-dimensional flow and for a:) < 2ac and that R,, < 0 for 
Lchb) > 0. Hence, our results include those due to Pal & Kelly (1978) for ap) < 201,. 
However, our result R,, = 0 for a:) = 2a, is in contrast to that obtained by Pal 85 
Kelly (1978) for this case, which may be due to the particular eigenvalue relation, 
R, = (2aC),, adopted for the present flow system which was found to  affect the 
outcome of this result. 

Krettenauer & Schumann ( 1989) investigated by direct numerical simulations the 
problem of Rayleigh-BBnard convection for the case where the lower boundary 
height varied sinusoidally in one direction only. For the subcritical flow case 
(R < Rc) ,  where the wavelength of the surface wave was taken to be about equal to 
the critical wavelength (2n/a,), they found that two-dimensional rolls along the 
wavy surface are the form of convection, while two sets of oblique rolls evolved for 
the supercritical flow case (R > &), where one surface wave was allowed in the 
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computational box. These results are similar to the present results for 2\Xb) = 1 
derived from example I given in $ 3  and example 1 given in $4. The same authors 
extended their 1989 model to turbulent convection regime (Krettenauer & Schumann 
1992). They found, in particular, that the motion structure persists longer over wavy 
terrain than over flat surfaces and that three-dimensional motions are enforced by 
the terrain, and the boundary modulation is more effective for longer wavelength of 
the surface wave. These results are consistent with the present results. It should be 
noted that for a realistic comparison of the results of such studies with those in 
applications, notably in atmospheric cases, these studies should be extended to 
include more general surface corrugations of the types considered in the present 
study and for regimes of appropriate values of the controlling parameters. 

The results of the present study together with the remark made in the first 
paragraph of this section indicate that boundary corrugations can affect the flow 
patterns allowed by the nonlinear problem significantly, reduce the orientational 
degeneracy of the linear problem and can lead to the surprising result that the non- 
regular flow pattern can be preferred. Hence, our studies show for the first time that 
these non-regular solutions, admitted by the nonlinear system, are not just pure 
theoretical solutions but they can in fact be realized in practical applications if the 
right surface roughness shape with the right magnitude (6L) are present in such 
problems. Although there have been studies on the problem of convection in a 
horizontal layer with one-dimensional spatially periodic temperature (Kelly & Pal 
1978; Krettenauer & Schumann 1989; Yo0 & Kim 1991), these investigations were 
either for two-dimensional flow or for Neb) = I only and thus could not investigate the 
problem of preferred flow pattern for Nb)  > 1 which is essentially a collection of an 
infinite number of three-dimensional flow problems. It turns out from the present 
results that the most surprising results presented in tj 3 correspond to the cases where 
N@) > 1, while the surprising results presented in $4  correspond to the cases where 
Nb) 2 1. 

The author would like to thank Professor Ron Adrian for suggesting the problem 
and for valuable comments on the subject. 

Appendix A 

boundary conditions : 

We apply Taylor-series expansions for the functions y3 and 8 about x = -+ to  obtain 

For the case where the lower boundary is corrugated, we have the following lower 

4 = 9-SRh = 0 at z = -4+6h. (A 1) 

For d = O(en) ( 1  < n Q 2 ,  n = 3) considered in this paper, we find that 

Now the qualitative results obtained in $93 and 4 (n = 3 , l  < n < 2)  are based on the 
leading-order systems of orders less than or equal to e3 and en, ( 1  < n < 2), 
respectively. Hence, terms of order en+l do not affect the qualitative results obtained 
in this paper and using (A 1) and (A 2) leads to (2 .3b )  and (2.6). 

18-2 
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Appendix B 
The solution to the system (4.4) can be written in the following form: 

ej exp (r, z )  for a t )  f 2n, 

el exp (r, z )  + e3 + e4 z for a:) = 2n, 

b, exp ( r j  z) for aLb) f 2n, 

b, exp ( r j  z) + b, + b, z 

j=1 f n ( 4  = 2 

j-1 

4 

i=1 

for a:) = 2n, 

( 4  

I gn(4 = 2 

5=1 

9 4 -  31 

where 
rl = [ar)(a:) + 2n)$, 

b, = -n2exp( --$r,)/sinhr, for ar)  $. 2n, n2 for aLb) = 2n, 

b, = n2 exp ($,)/sinh r3 for a:) .I. 2x, - 2n2 for a:) = 2n, 

e, = - [ r i  - (a$))2] bi/[4x2(crr))2] ( j  = 1, ..., 4) ; 
or for crib) = 2n ( j  = 1,2), 

ej = bj/(4n2) for = 2x ( j  = 3,4).  

r2 = - r l ,  r3 = [a:)(ag) - 2n)$ r - - r 

b, = - x 2  exp (-;r,)/sinh rl, b, = n2 exp (ir,)/sinh rl, 

for a:) f 2.11. 

The expression for S,, introduced in (4.7) has the following form : 

where 

and the summation over j runs 1 to 4 for ag) =k 2n and from 1 to 2 for ag) = 2n. 
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